The following code, when pasted into a Mathematica Notebook, will generate a depiction of a Carbon-60 Molecule (aka. Buckyball). Well, almost. Turns out that Mathematica Packages have changed in the 20 years since created my file. There is some debugging to be done. I have started this process and, if you get more debugging done before I do, let me me know. Share your code!
I apologize that my much younger self did not comment the code. I have added one comment at the beginning of the code. I guess the rest is for you to figure out.
~Matthew
THE CODE:
(*The following defines relative positions in 3D space for the sixty points that represent the sixty carbon atoms in a Buckyball*)
buckycoords={{1.22650000, 0.00000000, 3.31450000},
{ 0.37900000, 1.16640000, 3.31450000},
{-0.99220000, 0.72090000, 3.31450000},
{-0.99220000, -0.72090000, 3.31450000},
{ 0.37900000, -1.16640000, 3.31450000},
{ 3.40840000, 0.72090000, 0.59480000},
{ 2.79510000, 1.16640000, 1.82130000},
{ 2.41610000, 0.00000000, 2.57930000},
{ 2.79510000, -1.16640000, 1.82130000},
{ 3.40840000, -0.72090000, 0.59480000},
{ 0.36760000, 3.46430000, 0.59480000},
{-0.24560000, 3.01880000, 1.82130000},
{ 0.74660000, 2.29790000, 2.57930000},
{ 1.97310000, 2.29790000, 1.82130000},
{ 1.73890000, 3.01880000, 0.59480000},
{-3.18120000, 1.42020000, 0.59480000},
{-2.94690000, 0.69930000, 1.82130000},
{-1.95470000, 1.42020000, 2.57930000},
{-1.57570000, 2.58660000, 1.82130000},
{-2.33370000, 2.58660000, 0.59480000},
{-2.33370000, -2.58660000, 0.59480000},
{-1.57570000, -2.58660000, 1.82130000},
{-1.95470000, -1.42020000, 2.57930000},
{-2.94690000, -0.69930000, 1.82130000},
{-3.18120000, -1.42020000, 0.59480000},
{ 1.73890000, -3.01880000, 0.59480000},
{ 1.97310000, -2.29790000, 1.82130000},
{ 0.74660000, -2.29790000, 2.57930000},
{-0.24560000, -3.01880000, 1.82130000},
{ 0.36760000, -3.46430000, 0.59480000},
{ 0.99220000, 0.72090000, -3.31450000},
{-0.37900000, 1.16640000, -3.31450000},
{-1.22650000, 0.00000000, -3.31450000},
{-0.37900000, -1.16640000, -3.31450000},
{ 0.99220000, -0.72090000, -3.31450000},
{ 2.33370000, 2.58660000, -0.59480000},
{ 1.57570000, 2.58660000, -1.82130000},
{ 1.95470000, 1.42020000, -2.57930000},
{ 2.94690000, 0.69930000, -1.82130000},
{ 3.18120000, 1.42020000, -0.59480000},
{-1.73890000, 3.01880000, -0.59480000},
{-1.97310000, 2.29790000, -1.82130000},
{-0.74660000, 2.29790000, -2.57930000},
{ 0.24560000, 3.01880000, -1.82130000},
{-0.36760000, 3.46430000, -0.59480000},
{-3.40840000, -0.72090000, -0.59480000},
{-2.79510000, -1.16640000, -1.82130000},
{-2.41610000, 0.00000000, -2.57930000},
{-2.79510000, 1.16640000, -1.82130000},
{-3.40840000, 0.72090000, -0.59480000 },
{-0.36760000, -3.46430000, -0.59480000},
{ 0.24560000, -3.01880000, -1.82130000},
{-0.74660000, -2.29790000, -2.57930000},
{-1.97310000, -2.29790000, -1.82130000},
{-1.73890000, -3.01880000, -0.59480000 },
{ 3.18120000, -1.42020000, -0.59480000},
{ 2.94690000, -0.69930000, -1.82130000},
{ 1.95470000, -1.42020000, -2.57930000},
{ 1.57570000, -2.58660000, -1.82130000},
{ 2.33370000, -2.58660000, -0.59480000}};
points=ScatterPlot3D[buckycoords,PlotStyle->PointSize[0.05],
PlotJoined->False,PlotStyle->Color[0,1,0],Boxed->False,Axes->False]
primitives=Point /@ buckycoords;
primitives=Insert[primitives,RGBColor[1,0,0],1];
primitives=Insert[primitives,PointSize[0.05],1];
Show[Graphics3D[primitives]]
<<PolyhedronOperations`;
ball=First[TruncatedPolyhedron[Icosahedron,{0,0,0},3.45],1/3];
surface=ListSurfacePlot3D[ball,MeshShading->None,Boxed->False]
Length[ball];
Show[Out[__],Out[__],Shading->False,Boxed->False]